The point (2,8) is on the graph of f(x)=x3. What is the value of b if the point (0.5,8) is on the graph of f(bx)?

If the point (1,3) is on the graph of y=f(x), then what is the corresponding point on the graph of y=−2f(x)?

The point 28 is on the graph of fxx3 What is the value of b if the point 058 is on the graph of fbx If the point 13 is on the graph of yfx then what is the corr class=

Respuesta :

1) Given [tex]f(x) = x^{3}[/tex]

              [tex]f(bx) = (bx)^{3}= b^{3}  x^{3}[/tex]

Since (0.5,8) lies on f(bx) , [tex]8=b^{3} 0.5^{3}[/tex]

    Divide with [tex]0.5^{3}[/tex] on both sides

                                           [tex]b^{3} = \frac{8}{0.5^{3} }[/tex]

                                                           = 64

                                                   [tex]b=64^{\frac{1}{3} } = 4[/tex]

Hence b=4.

2) Given (1,3) lies on y=f(x) plugin x=1 and y=3

that is f(1) = 3

We can find corresponding point for that in y=-2f(x) by plugging in x=1.

That is y= -2f(1) = -2*3 = -6

Hence point is (1,-6)