Respuesta :

gmany

The point slope formula:

[tex]y-y_1=m(x-x_1)\\\\m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

We have:

[tex](3,\ 6)\to x_1=3,\ y_1=6\\\\(-2,\ 1)\to x_2=-2,\ y_2=1[/tex]

Substitute:

[tex]m=\dfrac{1-6}{-2-3}=\dfrac{-5}{-5}=1[/tex]

[tex]y-6=1(x-3)\\\\y-6=x-3[/tex]

Answer: The equation in point slope form is y-6 = x-3

Step-by-step explanation: The general equation of a line in point slope form is y - y1 =m(x -x1)

where m is the slope and (x1,y1)  is the point

Given point (3,6) and (-2,1)

We know slope of a line when two points are given

m=[tex]\frac{y2-y1}{x2-x1}[/tex]

where (x1,y1) and (x2,y2) are the two points

Here m=[tex]\frac{1-6}{-2-3}[/tex]

=[tex]\frac{-5}{-5}[/tex]

m=1

Now the equation of line

y-6 =  1 (x-3)

i.e. y-6 = x-3