Respuesta :
The point slope formula:
[tex]y-y_1=m(x-x_1)\\\\m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have:
[tex](3,\ 6)\to x_1=3,\ y_1=6\\\\(-2,\ 1)\to x_2=-2,\ y_2=1[/tex]
Substitute:
[tex]m=\dfrac{1-6}{-2-3}=\dfrac{-5}{-5}=1[/tex]
[tex]y-6=1(x-3)\\\\y-6=x-3[/tex]
Answer: The equation in point slope form is y-6 = x-3
Step-by-step explanation: The general equation of a line in point slope form is y - y1 =m(x -x1)
where m is the slope and (x1,y1) is the point
Given point (3,6) and (-2,1)
We know slope of a line when two points are given
m=[tex]\frac{y2-y1}{x2-x1}[/tex]
where (x1,y1) and (x2,y2) are the two points
Here m=[tex]\frac{1-6}{-2-3}[/tex]
=[tex]\frac{-5}{-5}[/tex]
m=1
Now the equation of line
y-6 = 1 (x-3)
i.e. y-6 = x-3