Respuesta :
Answer:
1. [tex]y=5x-10[/tex]
To find the x-intercept of the given linear equation , plug in y=0 and solve for x.
[tex]y=5x-10[/tex]
[tex]0=5x-10[/tex]
[tex]10=5x[/tex]
∴ [tex]x=2[/tex]
Now, to find the y-intercept for the given linear equation we plug in x=0 and solve for y.
[tex]y=5x-10[/tex]
[tex]y=5(0)-10[/tex]
[tex]y=0-10[/tex]=[tex]-10[/tex]
∴ y=-10.
The ordered pairs representing the points where the line [tex]y=5x-10[/tex] crosses the axes are, [tex](2,0)[/tex] and [tex](0, -10)[/tex].
2. [tex]y=2x-3[/tex]
To find the x-intercept of the given linear equation , plug in y=0 and solve for x.
[tex]y=2x-3[/tex]
[tex]0=2x-3[/tex]
[tex]3=2x[/tex]
∴[tex]x=\frac{3}{2}[/tex]
Now, to find the y-intercept for the given linear equation we plug in x=0 and solve for y.
[tex]y=2x-3[/tex]
[tex]y=2(0)-3[/tex]
[tex]y=0-3[/tex]=[tex]-10[/tex]
∴ y=-3.
The ordered pairs representing the points where the line [tex]y=2x-3[/tex] crosses the axes are, [tex](\frac{3}{2} ,0)[/tex] and [tex](0, -3)[/tex].
3. [tex]x+4y=12[/tex]
To find the x-intercept of the given linear equation , plug in y=0 and solve for x.
[tex]x+4y=12[/tex]
[tex]x+4\cdot (0)=12[/tex]
[tex]x+0=12[/tex]
∴[tex]x=12[/tex]
Now, to find the y-intercept for the given linear equation we plug in x=0 and solve for y.
[tex]x+4y=12[/tex]
[tex]0+4y=12[/tex]
[tex]4y=12[/tex]
∴ y=3.
The ordered pairs representing the points where the line [tex]x+4y=12[/tex] crosses the axes are, [tex](12, 0)[/tex] and [tex](0, 3)[/tex].
4. [tex]x-y=4[/tex]
To find the x-intercept of the given linear equation , plug in y=0 and solve for x.
[tex]x-y=4[/tex]
[tex]x-0=4[/tex]
∴[tex]x=4[/tex]
Now, to find the y-intercept for the given linear equation we plug in x=0 and solve for y.
[tex]x-y=4[/tex]
[tex]0-y=4[/tex]
[tex]y=-4[/tex]
∴ y=-4.
The ordered pairs representing the points where the line [tex]x-y=4[/tex] crosses the axes are, [tex](4, 0)[/tex] and [tex](0, -4)[/tex].
5. [tex]y=-2x[/tex]
To find the x-intercept of the given linear equation , plug in y=0 and solve for x.
[tex]y=-2x[/tex]
[tex]0=-2x[/tex]
∴[tex]x=0[/tex]
Now, to find the y-intercept for the given linear equation we plug in x=0 and solve for y.
[tex]y=-2\cdot(0)[/tex]
[tex]y=0[/tex]
[tex]y=0[/tex]
∴ y=0.
The ordered pairs representing the points where the line [tex]y=-2x[/tex] crosses the axes is, [tex](0, 0)[/tex]
6. [tex]y-4x=0[/tex]
To find the x-intercept of the given linear equation , plug in y=0 and solve for x.
[tex]y-4x=0[/tex]
[tex]0-4x=0[/tex]
[tex]-4x=0[/tex]
∴[tex]x=0[/tex]
Now, to find the y-intercept for the given linear equation we plug in x=0 and solve for y.
[tex]y-4x=0[/tex]
[tex]y-4\cdot (0)=0[/tex]
[tex]y-0=0[/tex]
∴ y=0.
The ordered pairs representing the points where the line [tex]y-4x=0[/tex] crosses the axes is, [tex](0,0)[/tex]
7. [tex]0.3x-0.4y=0.7[/tex]
To find the x-intercept of the given linear equation , plug in y=0 and solve for x.
[tex]0.3x-0.4\cdot (0)=0.7[/tex]
[tex]0.3x-0=0.7[/tex]
[tex]x=\frac{0.7}{0.3}[/tex]
∴[tex]x=\frac{7}{3}[/tex]
Now, to find the y-intercept for the given linear equation we plug in x=0 and solve for y.
[tex]0.3\cdot(0)-0.4y=0.7[/tex]
[tex]0-0.4y=0.7[/tex]
[tex]-0.4y=0.7[/tex]
[tex]y=-\frac{0.7}{0.4}[/tex]
∴ [tex]y=-\frac{7}{4}[/tex]
The ordered pairs representing the points where the line [tex]0.3x-0.4y=0.7[/tex] crosses the axes are, [tex](\frac{7}{3} , 0)[/tex] and [tex](0, -\frac{7}{4} )[/tex].
8. [tex]y=\frac{2}{3}x-\frac{1}{3}[/tex]
To find the x-intercept of the given linear equation , plug in y=0 and solve for x.
[tex]0=\frac{2}{3}x-\frac{1}{3}[/tex]
[tex]\frac{2}{3}x=\frac{1}{3}[/tex]
[tex]x=\frac{1}{3}\cdot \frac{3}{2}[/tex]
∴[tex]x=\frac{1}{2}[/tex]
Now, to find the y-intercept for the given linear equation we plug in x=0 and solve for y.
[tex]y=\frac{2}{3}\cdot (0)-\frac{1}{3}[/tex]
[tex]y=0-\frac{1}{3}[/tex]
∴[tex]y=-\frac{1}{3}[/tex]
The ordered pairs representing the points where the line[tex]y=\frac{2}{3}x-\frac{1}{3}[/tex] crosses the axes are,[tex](\frac{1}{2}, 0)[/tex] and [tex](0, -\frac{1}{3} )[/tex]