Respuesta :
solution:
y = v0t + ½at²
1150 = 79t + ½3.9t²
0 = 3.9t² + 158t - 2300
from quadratic equations and eliminating the negative answer
t = (-158 + v158² -4(3.9)(-2300)) / 2(3.9)
t = 11.37 s to engine cut-off
the velocity at that time is
v = v0 + at
v = 79 + 3.9(11.37)
v = 123.3 m/s
it rises for an additional time
v = gt
t = v/g
t = 123.3 / 9.8
t = 12.59 s
gaining more altitude
y = ½vt
y = 123.3(12.59) /2
y = 776 m
for a peak height of
y = 776 + 1150
Answer:
t = 31.52 s, the time until the crash
t = 42 s, time to the motion
Explanation:
We have the following data:
so = 0
vo = 80.6 m/s
a = 3.90 m/s^2
s = 1040 m
replacing in the distance equation we have:
s = so + vo*t + (a*t^2)/2
s = 0 + 80.6*t + (3.9 * t^2)/2 = 1040
clearing t:
t = 10.48 s
v1 = v2o = vo + a*t = 80.6 + (3.9 * 10.48) = 121.472 m/s
s2 = 1040 + 121.472t - (9.8*t^2)/2
0 = 1040 + 121.472t - (9.8*t^2)/2
Clearing t:
t = 31.52 s, the time until the crash
t = 42 s, time to the motion