What is the value of the correlation coefficient r of the data set?
A. -0.84
B. 0.71
C. 0.84
D. 1

The correct option will be: C) 0.84
Explanation
Formula for Correlation coefficient :
[tex]r= \frac{n(\Sigma xy)-(\Sigma x)(\Sigma y)}{\sqrt{[n\Sigma x^2-(\Sigma x)^2][n\Sigma y^2-(\Sigma y)^2]}}[/tex]
First, for each point(x, y), we need to calculate x², y² and xy .
Then, we will find sum all x, y, x², y² and xy, which gives us Σx, Σy, Σx², ∑y² and Σxy
(Please refer to the attached image for the table )
Here we got, ∑x = 44 , ∑y = 183 , ∑x² = 362 , ∑y² = 6575 and ∑xy = 1480
'n' is the total number of data set, which is 7 here.
So, plugging those values into the above formula..........
[tex]r= \frac{n(\Sigma xy)-(\Sigma x)(\Sigma y)}{\sqrt{[n\Sigma x^2-(\Sigma x)^2][n\Sigma y^2-(\Sigma y)^2]}}\\ \\ r=\frac{7(1480)-(44)(183)}{\sqrt{[7(362)-(44)^2][7(6575)-(183)^2]}}\\ \\ r=\frac{10360-8052}{\sqrt{(598)(12536)}}\\ \\ r=\frac{2308}{\sqrt{7496528}}\\ \\ r=0.84[/tex]
So, the value of the correlation coefficient is 0.84