Respuesta :

To solve the given operation firat we take LCM for both terms.


As denominator of first term is 3 and second term is [tex] 12x-8 [/tex]

Therefore, the Lcm is [tex]3(12x-8) [/tex]


Now solving and making same denominator for each term


[tex]\frac{7}{3} [/tex] [tex]\times [/tex] [tex] \frac{12x-8}{12x-8} [/tex]

On multiplying we get

[tex]\frac{7(12x-8)}{3(12x-8)} [/tex] [tex]=\frac{84x-56}{3(12x-8)} [/tex]

Now solving other term

[tex]\frac{8}{12x-8} [/tex] [tex]\times [/tex] [tex]\frac{3}{3} [/tex]

On multiplying we get

[tex]\frac{24}{3(12x-8)} [/tex]


Now solving the expression by putting the values

[tex]\frac{84x-56-24}{3(12x-8)} [/tex]

[tex]\frac{84x-80}{12(3x-2)} [/tex]

[tex]\frac{4(21x-20)}{12(3x-2)} [/tex]

On solving we get

[tex]\frac{21x-20}{3(3x-2)} [/tex]


There denominator of the expression is

[tex]9x-6 [/tex]


Hope this will help

The least common denominator is 12