Respuesta :
Answer:
de=11
Step-by-step explanation:
We are given that b is the midpoint of ac
ac=cd, ab=3x+4,ac=11x-17 and ce=49
We have to find the value of de
b is the midpoint of ac therefore we have
ab=bc
ac=ab+bc=ab+ab=2ab
[tex]11x-17=2(3x+4)[/tex]
[tex]11x-17=6x+8[/tex]
[tex]11x-6x=8+17=25[/tex]
[tex]5x=25[/tex]
[tex]x=\frac{25}{5}=5[/tex]
Then , substitute the value of x
[tex]ab=3(5)+4=19[/tex]
ac=[tex]11(5)-17=55-17=38=cd[/tex]
ce=cd+de
49=38+de
[tex]de=49-38[/tex]
de=11
The measure of segment DE is 11.
Given:
[tex]AB = 3x+4\\AC = 11x-17\\CE=49[/tex]
See image in the attachment below showing the information given in the question.
Since B is the midpoint of AC, therefore:
[tex]AB = AC[/tex]
[tex]2(AB) = AC[/tex]
Substitute
[tex]2(3x+4)=11x-17[/tex]
Solve for x
[tex]6x +8=11x-17\\17 + 8 = 11x-6x\\25 = 5x\\[/tex]
Divide both sides by 5
[tex]5 = x\\x=5[/tex]
Find DE:
[tex]DE = CE - CD[/tex] (Segment Addition Postulate)
[tex]AC = CD = 11x-17[/tex]
Plug in the value of x
[tex]CD = 11(5) -17 = 38[/tex]
[tex]CE = 49 (given)[/tex]
Substitute
[tex]DE = 49 - 38\\DE = 11[/tex]
Therefore the length of DE = 11.
Learn more about segments here:
https://brainly.com/question/16553579
