An angle bisector divides an angle into two equal halves. The measure of angle AEC is: [tex]139^o[/tex]
Given that:
[tex]\angle AEB = 11x - 12[/tex]
[tex]\angle CED = 4x + 1[/tex]
Since ray BD bisects [tex]\angle BED[/tex], then:
[tex]\angle BEC = \angle CED[/tex]
This implies that:
[tex]\angle BEC = 4x + 1[/tex]
[tex]\angle AEC[/tex] is calculated as:
[tex]\angle AEC = \angle AEB + \angle BEC[/tex]
This gives:
[tex]\angle AEC = 11x - 12 + 4x + 1[/tex]
Collect like terms
[tex]\angle AEC = 11x + 4x- 12 + 1[/tex]
[tex]\angle AEC = 15x-11[/tex]
Next, we calculate the value of x as follows:
[tex]\angle AEB + \angle CED + \angle BEC = 180[/tex] --- angle on a straight line.
This gives:
[tex]11x - 12 + 4x + 1 + 4x + 1 = 180[/tex]
Collect like terms
[tex]11x + 4x + 4x = 180+12-1-1[/tex]
[tex]19x = 190[/tex]
Divide by 19
[tex]x = 10[/tex]
Substitute 10 for x in [tex]\angle AEC = 15x-11[/tex]
[tex]\angle AEC= 15 \times 10 - 11[/tex]
[tex]\angle AEC= 139^o[/tex]
Hence, the measure of [tex]\angle AEC[/tex] is [tex]139^o[/tex]
Read more about angle bisector at:
brainly.com/question/12896755