Respuesta :

Answer:

By comparing the ratios of sides in similar triangles ΔABC and ΔADB,we can say that [tex]x^{2} =pz[/tex]

Step-by-step explanation:

Given that ∠ABC=∠ADC, AD=p and DC=q.

Let us take compare Δ ABC and  Δ ADB in the attached file , ∠A is common in both triangles

                                                                     and given ∠ABC=∠ADB=90°

Hence using AA postulate, ΔABC ≈ ΔADB.

Now we will equate respective side ratios in both triangles.

[tex]\frac{AB}{AC}= \frac{AD}{AB}=\frac{BD}{BC}[/tex]

Since we don't know BD , BC let us take first equality and plugin the variables given in respective sides.

[tex]\frac{x}{z}= \frac{p}{x}[/tex]

Cross multiply

[tex]x^{2}=pz[/tex]

Hence proved.


Ver imagen ColinJacobus