Respuesta :

the answer is c. 12ac^14/b^3
Ver imagen abbiiee

Answer:

The correct answer is C

[tex]\frac{12ac^{14}}{b^3}[/tex]

Step-by-step explanation:

We want to simplify

[tex]\frac{(a^2b^4c)^{2}(6a^3b)(2c^5)^3}{4a^6b^{12}c^3}[/tex].


Recall  this property of exponents,

[tex](a^m)^n=a^{mn}[/tex]

When we apply this property our expression becomes,

[tex]=\frac{(a^4b^8c^2)(6a^3b)(2^3c^15)}{4a^6b^{12}c^3}[/tex].

We rearrange to get

[tex]=\frac{6\times8\times a^4\times a^3 \times b^8\times b\times c^2\times c^{15}}{4a^6b^{12}c^3}[/tex].


We now apply another property of exponents to simplify the numerator.

According to this property,

[tex]a^m\times a^n=a^{m+n}[/tex]

When we apply this property, the expression will now be,


[tex]=\frac{6\times8\times a^{4+3} \times b^{8+1} c^{2+15}}{4a^6b^{12}c^3}[/tex]


This simplifies to,


[tex]=\frac{48\times a^{7} \times b^{9} c^{17}}{4a^6b^{12}c^3}[/tex]


We again apply this property of exponents,

[tex]\frac{a^m}{a^n}=a^{m-n}[/tex].


When we apply this property, the expression will be,


[tex]=12\times a^{7-6} \times b^{9-12} c^{17-3}[/tex]


[tex]=12\times a^1 \times b^{-3} c^{14}[/tex]


We rewrite this as a positive index to get,


[tex]=\frac{12ac^{14}}{b^3}[/tex]


The correct answer is C