Answer:
(a)[tex]5n=3n+15[/tex]
(b)[tex]n=7.5[/tex]
Solution is not viable
Step-by-step explanation:
(a)
Total number of red ping pong balls[tex]=5[/tex]
Total number of red ping pong balls[tex]=n[/tex]
Now, probability of an event [tex]=\frac{Number of favourable events}{Total number of events}[/tex]
Then, theprobability of randomly choosing a blue ping pong ball is
[tex]=\frac{n}{n+5}[/tex]
Given that this probability is[tex]=\frac{3}{5}[/tex]
Thus, we have that,
[tex]\frac{n}{n+5}= \frac{3}{5}\\ 5n=3(n+5)\\5n=3n+15[/tex]
(b)
Solving, the above equation,
[tex]5n=3n+15\\2n=15\\n=7.5[/tex]
This solution is not viable as, number of ping pong ball must be an integer and not a decimal number.