Respuesta :

gmany

[tex]f(x)=3(x+5)+\dfrac{4}{x}\\\\f(a+2)\to\text{put x = a + 2 to the equation of the function f}\\\\f(a+2)=3(a+2+5)+\dfrac{4}{a+2}=3(a+7)+\dfrac{4}{a+2}[/tex]

Answer:

The value of [tex]f(a+2)[/tex] is [tex]3a+21+\frac{4}{a+2}[/tex].

Step-by-step explanation:

Consider the provided function [tex]f(x)=3(x+5)+\frac{4}{x}[/tex]

In order to find the value of [tex]f(a+2)[/tex]

Substitute x = a + 2 in the provided function.

[tex]f(a+2)=3((a+2)+5)+\frac{4}{a+2}[/tex]

[tex]f(a+2)=3(a+2+5)+\frac{4}{a+2}[/tex]

[tex]f(a+2)=3(a+7)+\frac{4}{a+2}[/tex]

Now, apply the distributive property: [tex]a(b+c)=ab+ac[/tex]

[tex]f(a+2)=3a+21+\frac{4}{a+2}[/tex]

Therefore, the value of [tex]f(a+2)[/tex] is [tex]3a+21+\frac{4}{a+2}[/tex].