Respuesta :
Answer:
[tex]h(x)=4x^2+\dfrac{3}{2}x-7[/tex]
Step-by-step explanation:
Given:
[tex]f(x)=\dfrac{x}{2}-3[/tex]
[tex]g(x)=4x^2+x-4[/tex]
To find: (f+g)(x)
It is a composite function. Sum of f and g function.
[tex]h(x)=f(x)+g(x)[/tex]
[tex]h(x)=\dfrac{x}{2}-3+4x^2+x-4[/tex]
Combine the like term
[tex]h(x)=4x^2+\dfrac{3}{2}x-7[/tex]
Hence, The sum of f(x) and g(x) would be [tex]h(x)=4x^2+\dfrac{3}{2}x-7[/tex]