Respuesta :

(23) x = 800 × tan70°

using the tan ratio in the right triangle

tan 70° = [tex]\frac{x}{800}[/tex]

⇒ x = 800 × tan 70°

(24) using the tan ratio in the right triangle

tan80° = [tex]\frac{d}{30}[/tex]

⇒ d = 30 × tan80°

(25) [tex]\frac{5.6}{2}[/tex] = [tex]\frac{h}{6}[/tex] ( h is the height of the cross )

using similar triangles, with 2yards = 6 feet











#23) in reference to the given angle, which sides are given?  opposite & adjacent

tan θ = [tex]\frac{opposite}{adjacent}[/tex]

tan 70° = [tex]\frac{x}{800}[/tex]

800 tan 70° = x

2,197.98 = x

Answer: 2,198

#24) in reference to the given angle, which sides are given?  opposite & adjacent

tan θ = [tex]\frac{opposite}{adjacent}[/tex]

tan 80° = [tex]\frac{d}{30}[/tex]

30 tan 80° = x

170.138 = x

Answer: 170 ft

#26) first convert everything into the same units.  I am going to use feet

5 ft 6 inches = 5.5 ft

2 yards = 6 ft

Next, set up a proportion, cross multiply, and solve for the variable

[tex]\frac{height(boy)}{shadow (boy)} = \frac{height(cross)}{shadow (cross)}[/tex]

[tex]\frac{5.5}{2} = \frac{x}{6}[/tex]

5.5(6) = 2(x)

[tex]\frac{5.5(6)}{2} = x[/tex]

5.5(3) = x

16.5 = x

Answer: 16.5 ft