Respuesta :


Perimeter of the triangle ABC is 18.7 units.

Coordinate of the point A is (4, -1), B is (-1, 4) and C is (0, -3).

Length of the side AB = [tex]\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}[/tex]

AB = [tex]\sqrt{(-1-4)^{2}+(4+1)^{2}} =\sqrt{50}[/tex]

AB = 7.07 units = 7.1 units ( rounded to the nearest 10th)

Length of the side BC = [tex]\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}[/tex]

BC = [tex]\sqrt{(0+1)^{2}+(-3-4)^{2}}[/tex]

BC = [tex]\sqrt{50}[/tex]

BC = 7.07 units = 7.1 units ( rounded to the nearest 10th)

Length of the side CA =[tex]\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}[/tex]

CA = [tex]\sqrt{(4-0)^{2}+(-1+3)^{2}}[/tex]

CA = [tex]\sqrt{20}[/tex]

CA = 4.47 units = 4.5 ( rounded to the nearest 10th)

Perimeter of the triangle ABC = sum of all three sides = (7.1 + 7.1 + 4.5) units = 18.7 units