1. Estimate how many times larger 4 x 1015 is than 8 x 109 in the form of a single digit times an integer power of 10. 2. Estimate how many times larger 2 x 10-5 is than 4 x 10-12 in the form of a single digit times an integer power of 10.

Respuesta :

Answer:

 [tex]4*10^{15}[/tex] is [tex]5*10^5[/tex] times larger than [tex]8*10^9[/tex]

 [tex]4*10^{15}[/tex] is [tex]5*10^6[/tex] times larger than [tex]4*10^{-12}[/tex]

Explanation:

Ratio between [tex]4*10^{15}[/tex] and [tex]8*10^9[/tex] = [tex]\frac{4*10^{15}}{8*10^9} =5*10^5[/tex]

 So [tex]4*10^{15}[/tex] is [tex]5*10^5[/tex] times larger than [tex]8*10^9[/tex]

Ratio between [tex]2*10^{-5}[/tex] and [tex]4*10^{-12}[/tex] = [tex]\frac{2*10^{-5}}{4*10^{-12}} =5*10^6[/tex]

 So [tex]4*10^{15}[/tex] is [tex]5*10^6[/tex] times larger than [tex]4*10^{-12}[/tex]