Respuesta :
(2x)(x^2)+(2x)(x)+(2x)(-2)+(3)(x^2)+(3)(x)+(3)(-2)
Simplifying
(2x)(x2) + (2x)(x) + (2x)(-2) + (3)(x2) + (3)(x) + (3)(-2)
Remove parenthesis around (2x)
2x(x2) + (2x)(x) + (2x)(-2) + (3)(x2) + (3)(x) + (3)(-2)
Multiply x * x2
2x3 + (2x)(x) + (2x)(-2) + (3)(x2) + (3)(x) + (3)(-2)
Remove parenthesis around (2x)
2x3 + 2x(x) + (2x)(-2) + (3)(x2) + (3)(x) + (3)(-2)
Multiply x * x
2x3 + 2x2 + (2x)(-2) + (3)(x2) + (3)(x) + (3)(-2)
Remove parenthesis around (2x)
2x3 + 2x2 + 2x(-2) + (3)(x2) + (3)(x) + (3)(-2)
Reorder the terms for easier multiplication:
2x3 + 2x2 + 2 * -2x + (3)(x2) + (3)(x) + (3)(-2)
Multiply 2 * -2
2x3 + 2x2 + -4x + (3)(x2) + (3)(x) + (3)(-2)
Multiply 3 * -2
2x3 + 2x2 + -4x + 3x2 + 3x + -6
Reorder the terms:
-6 + -4x + 3x + 2x2 + 3x2 + 2x3
Combine like terms: -4x + 3x = -1x
-6 + -1x + 2x2 + 3x2 + 2x3
Combine like terms: 2x2 + 3x2 = 5x2
-6 + -1x + 5x2 + 2x3
Answer:
The product is,[tex]-6 + -1x + 5x2 + 2x3[/tex]
explanation:
Simplifying
[tex](2x)(x2) + (2x)(x) + (2x)(-2) + (3)(x2) + (3)(x) + (3)(-2)[/tex]
Remove the parentheses (2x)
[tex]2x(x2) + (2x)(x) + (2x)(-2) + (3)(x2) + (3)(x) + (3)(-2)[/tex]
Multiply [tex]x * x2[/tex]
[tex]2x3 + (2x)(x) + (2x)(-2) + (3)(x2) + (3)(x) + (3)(-2)[/tex]
Remove the closing parentheses (2x)
[tex]2x3 + 2x(x) + (2x)(-2) + (3)(x2) + (3)(x) + (3)(-2)[/tex]
Multiply [tex]x * x[/tex]
[tex]2x3 + 2x2 + (2x)(-2) + (3)(x2) + (3)(x) + (3)(-2)[/tex]
Remove all parentheses (2x)
[tex]2x3 + 2x2 + 2x(-2) + (3)(x2) + (3)(x) + (3)(-2)[/tex]
Rearrange the terms to make multiplication easier:
[tex]2x3 + 2x2 + 2 * -2x + (3)(x2) + (3)(x) + (3)(-2)[/tex]
Multiply [tex]2 * -2[/tex]
[tex]2x3 + 2x2 + -4x + (3)(x2) + (3)(x) + (3)(-2)[/tex]
Multiply [tex]3 * -2[/tex]
[tex]2x3 + 2x2 + -4x + 3x2 + 3x + -6[/tex]
Reorder the terms:
[tex]-6 + -4x + 3x + 2x2 + 3x2 + 2x3[/tex]
Combine like terms: -4x + 3x = -1x
[tex]-6 + -1x + 2x2 + 3x2 + 2x3[/tex]
Combine like terms: 2x2 + 3x2 = 5x2
[tex]-6 + -1x + 5x2 + 2x3[/tex]
Learn more about here Simplified Product here-
https://brainly.com/question/2548064
#SPJ2