What is the midpoint of AB?

The formula of a midpoint:
[tex]\left(\dfrac{x_A+x_B}{2},\ \dfrac{y_A+y_B}{2}\right)[/tex]
We have
[tex]A(-2,\ 5),\ B(3,\ -3)[/tex]
Substitute:
[tex]\dfrac{-2+3}{2}=\dfrac{1}{2}=0.5\\\\\dfrac{5+(-3)}{2}=\dfrac{2}{2}=1[/tex]
Answer: (0.5, 1).
Answer:
The midpoint of AB is (0.5,1).
Step-by-step explanation:
From the given graph it is clear that the vertices of the triangle ABC are A(-2,5), B(3,-3) and C(-4,-1).
If end points of a line segment are [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex], then the midpoint of that segment is
[tex]Midpoint=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]
We need to find the midpoint of AB.
[tex]Midpoint=(\frac{-2+3}{2},\frac{5+(-3)}{2})[/tex]
[tex]Midpoint=(\frac{1}{2},\frac{5-3}{2})[/tex]
On further simplification we get
[tex]Midpoint=(\frac{1}{2},\frac{2}{2})[/tex]
[tex]Midpoint=(0.5,1)[/tex]
Therefore the midpoint of AB is (0.5,1).