Respuesta :
First swap the x and y variable, then isolate y.
y = 9x^2 - 4
x = 9y^2 - 4
x + 4 = 9y^2
(x+4)/9 = y^2
plus or minus
[tex] \sqrt{((x + 4) \div 9} = y[/tex]
y = 9x^2 - 4
x = 9y^2 - 4
x + 4 = 9y^2
(x+4)/9 = y^2
plus or minus
[tex] \sqrt{((x + 4) \div 9} = y[/tex]
The equation of the inverse of the function is [tex]y=\sqrt{\frac{x+4}{9} }[/tex]
Given the expression y = 9x^2 -4
Replace y with x to have
x = 9y^2 -4
Make y the subject of the formula to get the inverse function
9y^2 = x+ 4
[tex]y^2 = \frac{x+4}{9} \\y =\sqrt{\frac{x+4}{9} }[/tex]
Hence the equation of the inverse of the function is [tex]y=\sqrt{\frac{x+4}{9} }[/tex]
Learn more here: https://brainly.com/question/12220962