Please help me with this physics prooblem

Take the missile's starting position to be the origin. Assuming the angles given are taken to be counterclockwise from the positive horizontal axis, the missile has position vector with components
[tex]x=v_0\cos20.0^\circ t+\dfrac12a_xt^2[/tex]
[tex]y=v_0\sin20.0^\circ t+\dfrac12a_yt^2[/tex]
The missile's final position after 9.20 s has to be a vector whose distance from the origin is 19,500 m and situated 32.0 deg relative the positive horizontal axis. This means the final position should have components
[tex]x_{9.20\,\mathrm s}=(19,500\,\mathrm m)\cos32.0^\circ[/tex]
[tex]y_{9.20\,\mathrm s}=(19,500\,\mathrm m)\sin32.0^\circ[/tex]
So we have enough information to solve for the components of the acceleration vector, [tex]a_x[/tex] and [tex]a_y[/tex]:
[tex]x_{9.20\,\mathrm s}=\left(1810\,\dfrac{\mathrm m}{\mathrm s}\right)\cos20.0^\circ(9.20\,\mathrm s)+\dfrac12a_x(9.20\,\mathrm s)^2\implies a_x=21.0\,\dfrac{\mathrm m}{\mathrm s^2}[/tex]
[tex]y_{9.20\,\mathrm s}=\left(1810\,\dfrac{\mathrm m}{\mathrm s}\right)\sin20.0^\circ(9.20\,\mathrm s)+\dfrac12a_y(9.20\,\mathrm s)^2\implies a_y=110\,\dfrac{\mathrm m}{\mathrm s^2}[/tex]
The acceleration vector then has direction [tex]\theta[/tex] where
[tex]\tan\theta=\dfrac{a_y}{a_x}\implies\theta=79.2^\circ[/tex]