The mean [tex]\mu =11.5[/tex] pounds;
the standard deviation is [tex]\sigma =2.7[/tex] pounds.
Let the variable [tex]X[/tex] be the weight of male babies less than 2 months old. It is normally distibuted with a law
[tex]X\sim N(11.5, 2.7^2).[/tex]
Find the variable
[tex]Z=\dfrac{X-\mu}{\sigma},[/tex] that is normally distributed with a law
[tex]Z\sim N(0, 1).[/tex]
Part A.
If X=15 pounds, then
[tex]Z=\dfrac{15-11.5}{2.7}\approx 1.2963[/tex] and
[tex]Pr(X<15)=Pr(Z<1.2963)\approx 0.9032[/tex]
Part B.
If X=15 pounds, then
[tex]Z=\dfrac{15-11.5}{2.7}\approx 1.2963.[/tex]
If X=13 pounds, then
[tex]Z=\dfrac{13-11.5}{2.7}\approx 0.5555[/tex] and
[tex]Pr(13<X<15)=Pr(0.5555<Z<1.2963)\approx 0.9032-0.7123=0.1909[/tex]
Part C.
If X=17 pounds, then
[tex]Z=\dfrac{17-11.5}{2.7}\approx 2.0370[/tex] and
[tex]Pr(X>17)=Pr(Z>2.0370)=1-Pr(Z<2.0370)\approx 1-0.9793=0.0207.[/tex]
This means that approximately 2% of babies are born with weight more than 17 pounds and, therefore, seems to be quite unusual for a baby.