Given the function [tex]p(x)=x^2+4x-12.[/tex]
Part A.
To write the expression that defines [tex]p(x-6)+5,[/tex] you have to substitute x-6 instead of x into the function expression and then add 5 to the function:
[tex]p(x-6)+5=((x-6)^2+4(x-6)+12)+5,\\\\p(x-6)+5=x^2-12x+36+4x-24+12+5,\\\\p(x-6)+5=x^2-8x+29.[/tex]
Part B.
1 transformation is translation 6 units to the right (p(x-6) determines this transfromation).
2 transformation is translation 5 units up (+5 determines this transformation).