Respuesta :

frika

Given the equation [tex]6x-3y=5.[/tex]

Check all options:

A. [tex]\left(9,\dfrac{16}{3}\right)[/tex], this means that [tex]x=9, y=\dfrac{16}{3}.[/tex] Substitute these numbers into the left side of the equation equation:

[tex]6\cdot 9-3\cdot \dfrac{16}{3}=54-16=38\neq 5.[/tex]

This option is false.

B.  [tex]\left(6,-3\right)[/tex], this means that [tex]x=6, y=-3.[/tex] Substitute these numbers into the left side of the equation equation:

[tex]6\cdot 6-3\cdot (-3)=36+9=45\neq 5.[/tex]

This option is false.

C.  [tex]\left(1,-\dfrac{11}{3}\right)[/tex], this means that [tex]x=1, y=-\dfrac{11}{3}.[/tex] Substitute these numbers into the left side of the equation equation:

[tex]6\cdot 1-3\cdot \left(-\dfrac{11}{3}\right)=6+11=17\neq 5.[/tex]

This option is false.

D.  [tex]\left(-2,-\dfrac{17}{3}\right)[/tex],  this means that [tex]x=-2, y=-\dfrac{17}{3}.[/tex] Substitute these numbers into the left side of the equation equation:

[tex]6\cdot (-2)-3\cdot \left(-\dfrac{17}{3}\right)=-12+17=5.[/tex]

This option is true.

Answer: correct choice is D.

Answer:

Option d

Step-by-step explanation:

Given is a linear equation in x and y as

[tex]6x-3y =5[/tex]

To check whether a point satisfies the equation, let us substitute and check whether the equation holds good

a) [tex]6(9)-3(16/3) = 38 \neq 5[/tex]

b) [tex]6(6)-3(-3) \neq 5[/tex]

c) [tex]6(1)-3(-11/3) = 17\neq 5[/tex]

d) [tex]6(-2)-3(-17/3) = -12+17 =5[/tex]

Since last point satisfies the equation, option d is the answer.