Lorne subtracted 6x3 – 2x + 3 from –3x3 + 5x2 + 4x – 7. Use the drop-down menus to identify the steps Lorne used to find the difference. 1. (–3x3 + 5x2 + 4x – 7) + (–6x3 + 2x – 3) 2. (–3x3) + 5x2 + 4x + (–7) + (–6x3) + 2x + (–3) 3. [(–3x3) + (–6x3)] + [4x + 2x] + [(–7) + (–3)] + [5x2] 4. –9x3 + 6x + (–10) + 5x2 5. –9x3 + 5x2 + 6x – 10

Respuesta :

6x^3-2x+3-(3x+5x^2+4x-7)          distribute the negative through the parenthesis

6x^3-2x+3x-5x^2-4x+7                 combine like terms

answer is 6x^3-5x^2-3x+10

Answer:

[tex]-9x^3 + 5x^2 + 6x-10[/tex]

Step-by-step explanation:

Lorne subtracted [tex]6x^3 - 2x + 3[/tex] from [tex]-3x^3 + 5x^2 + 4x - 7[/tex]

We need to subtract  [tex]6x^3 - 2x + 3[/tex]

[tex]-3x^3 + 5x^2 + 4x - 7 - (6x^3 - 2x + 3)[/tex]

Multiply negative sign inside the parenthesis

[tex]-3x^3 + 5x^2 + 4x - 7 -6x^3 +2x - 3[/tex]

Now combine like terms to simplify it

[tex]-3x^3-6x^3 + 5x^2 + 4x+2x - 7 - 3[/tex]

[tex]-9x^3 + 5x^2 + 6x-10[/tex]