Respuesta :

The function is not one-to-one function, hence the inverse doesn't exist for the whole domain of the function. But if we restrict the domain to [tex]x\in(-\infty,0][/tex] or [tex]x\in[0,\infty)[/tex], then we can give the inverse.

[tex]f(x)=x^2-4\\\\y=x^2-4\\\\x^2=y+4\\\\x=\sqrt{y+4} \vee x=-\sqrt{y+4}\\\\f^{-1}(x)=\sqrt{x+4}\vee f^{-1}(x)=-\sqrt{x+4}[/tex]

So, when [tex]D_{f(x)}:x\in(-\infty,0][/tex], the inverse is [tex]f^{-1}(x)=-\sqrt{x+4}[/tex] and when [tex]D_{f(x)}:x\in[0,\infty)[/tex], the inverse is [tex]f^{-1}(x)=\sqrt{x+4}[/tex].