A toy jeep is 12 1/2 inches long while an actual Jeep measures 18 3/4 ft long what is the value of the ratio length of a toy Jeep to the length of a actual Jeep

Respuesta :

The length of toy jeep = [tex]12 \frac{1}{2}[/tex]

= [tex]\frac{25}{2}[/tex] inches

The length of actual Jeep = [tex]18 \frac{3}{4}[/tex] feet

We have to find the ratio length of a toy jeep to the length of actual jeep.

Firstly, we will make the dimensions of the both the given lengths same.

As 1 foot = 12 inches

[tex]18 \frac{3}{4}[/tex] feet = [tex]18 \frac{3}{4} \times 12[/tex] inches

=[tex]\frac{75 \times 12}{4}[/tex]

= 225 inches

So, the ratio length of toy jeep to actual jeep

= [tex]\frac{25}{2} \div 225[/tex]

= [tex]\frac{25}{2} \times \frac{1}{225}[/tex]

= [tex]\frac{1}{18}[/tex]

= 1:18

So, the ratio length of a toy Jeep to the length of a actual Jeep is 1:18.

Length of toy jeep = [tex]12\frac{1}{2}=\frac{25}{2}[/tex] inches

Length of actual jeep = [tex]18\frac{3}{4}=\frac{75}{4}[/tex] feet

Now to find the ratio between the two, we must convert both of them in same units. So, lets convert the actual jeep length in feet to inches.

1 feet = 12 inches.

So, [tex]\frac{75}{4}[/tex] feet = [tex]\frac{75}{4}\times12=225[/tex] inches

Ratio of length of toy jeep to actual jeep will be =

[tex]\frac{\frac{25}{2}}{225}[/tex]

[tex]\frac{25}{2\times225}[/tex]

[tex]\frac{25}{450}[/tex] = [tex]\frac{5}{90}[/tex]

ratio is : [tex]\frac{1}{18}[/tex] or 1:18