Answer:
The value [fog](3) is 29.
Step-by-step explanation:
The given functions are
[tex]f(x)=2x+7[/tex]
[tex]g(x)=x^2+2[/tex]
We have to find [fog](3).
[tex](f\circ g)(x)=f(g(x))[/tex]
[tex](f\circ g)(3)=f(g(3))[/tex]
[tex](f\circ g)(3)=f(3^2+2)[/tex] [tex][\because g(x)=x^2+2][/tex]
[tex](f\circ g)(3)=f(11)[/tex]
[tex](f\circ g)(3)=2(11)+7[/tex] [tex][\because f(x)=2x+7][/tex]
[tex](f\circ g)(3)=22+7[/tex]
[tex](f\circ g)(3)=29[/tex]
Therefore the value [fog](3) is 29.