which equation is the quadratic regression equation for the data shown in the table?

x 3 6 5 10 5 4 7 2 9
y 7 2 4 5 3 5 1 12 2

y=3x∧2 + 6x+5

y=0.392x - 5.583x

y=0.392x∧2 - 5.583x + 21.167

y= -0.006x∧2 - 0.431x + 0.407

Respuesta :

Answer-

Quadratic regression equation  [tex]y=0.392x^2 - 5.583x + 21.167}[/tex]

Solution-

Quadratic Regression  Equation,

[tex]ax^2+bx+c[/tex]

[tex]a=\frac{(\sum x^2y\sum xx)-(\sum xy\sum xx^2)}{(\sum xx\sum x^2x^2)-({\sum xx^2)}^2}[/tex]

[tex]b=\frac{(\sum xy\sum x^2x^2)-(\sum x^2y\sum xx^2)}{(\sum xx\sum x^2x^2)-({\sum xx^2)}^2}[/tex]

[tex]c=\frac{\sum y}{n}-b\frac{\sum x}{n}-a\frac{\sum x^2}{n}[/tex]

Where,


[tex]\sum xx=\sum x^2-\frac{(\sum x)^2}{n}[/tex]

[tex]\sum xy=\sum xy-\frac{\sum x\sum y}{n}[/tex]

[tex]\sum xx^2=\sum x^3-\frac{\sum x\sum x^2}{n}[/tex]

[tex]\sum x^2y=\sum x^2y-\frac{\sum x^2\sum y}{n}[/tex]

[tex]\sum x^2x^2=\sum x^4-\frac{(\sum x^2)^2}{n}[/tex]

Calculating the values from the table,

a= 0.392

b= -5.583

c= 21.167

∴ Quadratic regression equation,

[tex]y=0.392x^2 - 5.583x + 21.167[/tex]


Ver imagen InesWalston
Ver imagen InesWalston
lemion

Answer:

y= 0.392x^2 − 5.583x + 21.167

explanation:

Ver imagen lemion