Now, suppose one of the roots of the polynomial function is irrational. The roots of the function are 2, [tex]\sqrt{3}[/tex], and 5. Write the equation for this polynomial function.

Which of the following must also be a root of the function?
-[tex]\sqrt{3}[/tex]

The equation of the polynomial function is:
f(x)=(x-2)(x-5)(x-[tex] \sqrt{3} [/tex])(x+[tex] \sqrt{3} [/tex])

EXPAND:

f(x) = [tex] x^{4} [/tex]- _________[tex] x^{3} [/tex]+_________[tex] x^{2} [/tex]+_________x-__________

Respuesta :

1.  Since, the roots of the function are 2,[tex]\sqrt{3}[/tex] and 5. We have to write the equation for this polynomial function.

So, the equation is [tex](x-2)(x-\sqrt3)(x-5)=0[/tex].

2.  Now, the equation of the polynomial function is

[tex]f(x) = (x-2)(x-5)(x-\sqrt3)(x+\sqrt3)[/tex]

We have to find its expanded form.

we will proceed from step by step to find the expanded form.

[tex](x-2)(x-5)(x-\sqrt3)(x+\sqrt3)[/tex]

= [tex][(x-2)(x-5)][(x-\sqrt3)(x+\sqrt3)][/tex]

= [tex][x^2-7x+10][x^2-3][/tex]

=[tex](x^4-7x^3+10x^2-3x^2+21x-30)[/tex]

= [tex]x^4-7x^3+7x^2+21x-30[/tex]

So, the expanded form of the given polynomial function is:

f(x) = = [tex]x^4-7x^3+7x^2+21x-30[/tex].

answer:

b. -√3

hope this helps! :o)