Respuesta :

The answer is letter A.

Answer:

A.If[tex](p\implies q)\;and \;(q\implies r)[/tex],then [tex]p\implies r[/tex].

Step-by-step explanation:

We have to find the which statement illustrate the law of syllogism.

Law of syllogism: Premise: if p then q

Premise:If q then r.

Conclusion:If p then r.

It is like transitive property of equality.

A.If[tex](p\implies q)\;and \;(q\implies r)[/tex],then [tex]p\implies r[/tex].

It is true by definition of law of syllogism.

B.If[tex](p\implies q)\;and \;(q\implies p)[/tex],then [tex]p\implies r[/tex].

It is not true by definition of syllogism.

C.If[tex](p\implies q)\;and \;(p\implies r)[/tex],then [tex]q\implies r[/tex]

It is not true by definition of syllogism.

D.If[tex]p\implies r)\;and \;(q\implies r)[/tex],then  [tex]p\implies r[/tex].

It is not true by definition of law of syllogism.

Answer:A