contestada

Determine the number of real solutions each quadratic equation has.
y = 12x2 - 9x + 4 _____real solution(s)
10x + y = -x2 + 2 _____real solution(s)
4y - 7 = 5x2 - x + 2 + 3y ______ real solution(s)
y = (-x + 4)2 ______real solution(s)

Respuesta :

Answer and Explanation :

Given : Quadratic equations.

To find : Determine the number of real solutions each quadratic equation has.

Solution :

To determine the number of solution of quadratic equation [tex]ax^2+bx+c=0[/tex] we find the discriminant.

If [tex]D=b^2-4ac=0[/tex] the quadratic has one real solution.

If [tex]D=b^2-4ac<0[/tex] the quadratic has no real solution.

If [tex]D=b^2-4ac>0[/tex] the quadratic has two real solution.

Now, We find one by one

1) [tex]y=12x^2-9x+4[/tex]

a=12 , b=-9 , c=4

[tex]D=(-9)^2-4(12)(4)=81-192=-111<0[/tex]

[tex]y=12x^2-9x+4[/tex] has zero real solution(s).

2) [tex]10x+y=-x^2+2[/tex]

[tex]y=-x^2-10x+2[/tex]

a=-1 , b=-10 , c=2

[tex]D=(-10)^2-4(-1)(2)=100+8=108>0[/tex]

[tex]10x+y=-x^2+2[/tex] has two real solution(s).

3) [tex]4y-7=5x^2-x+2+3y[/tex]

[tex]y=5x^2-x+9[/tex]

a=5 , b=-1 , c=9

[tex]D=(-1)^2-4(5)(9)=1-180=-179<0[/tex]

[tex]4y-7=5x^2-x+2+3y[/tex] has zero real solution(s).

4) [tex]y=(-x+4)^2[/tex]

[tex]y=x^2-8x+16[/tex]

a=1 , b=-8 , c=16

[tex]D=(-8)^2-4(1)(16)=64-64=0[/tex]

[tex]y=(-x+4)^2[/tex] has one real solution(s).

no

two

no

one

just did on edg and got it right