Respuesta :

Let denote the two numbers with X and Y. n represent one number

Y=X + 3 1/3

The sum of the two numbers is: X+Y=X + X + 3 1/3

The triple sum is: 3(X + X + 3 1/3)

3(X + X + 3 1/3) = 133

3X + 3X + 10 = 133            

6X + 10 = 133                    

6X = 123                            

X = 12 1/2                  , Y= X+ 3 1/3 =  12 1/2 = 3 1/3 is the largest number

Answer:

[tex]23\frac{5}{6}[/tex]

Step-by-step explanation:

Let x be the smaller number,

Thus, according to the question,

Second number or larger number = [tex]x+ 3\frac{1}{3}[/tex]

Now, sum of these number = [tex]x+x+ 3\frac{1}{3}=2x+\frac{10}{3}[/tex]

Again according to the question,

[tex]3\times ( 2x + \frac{10}{3})= 133[/tex]

[tex]6x + 10 = 133[/tex]

[tex]6x = 123[/tex]

[tex]\implies x = \frac{123}{6}[/tex]

Thus, the larger number = [tex]\frac{123}{6}+3\frac{1}{3}=\frac{123}{6}+\frac{10}{3}=\frac{123+20}{6}=\frac{143}{6}=23\frac{5}{6}[/tex]