Respuesta :
Let denote the two numbers with X and Y. n represent one number
Y=X + 3 1/3
The sum of the two numbers is: X+Y=X + X + 3 1/3
The triple sum is: 3(X + X + 3 1/3)
3(X + X + 3 1/3) = 133
3X + 3X + 10 = 133
6X + 10 = 133
6X = 123
X = 12 1/2 , Y= X+ 3 1/3 = 12 1/2 = 3 1/3 is the largest number
Answer:
[tex]23\frac{5}{6}[/tex]
Step-by-step explanation:
Let x be the smaller number,
Thus, according to the question,
Second number or larger number = [tex]x+ 3\frac{1}{3}[/tex]
Now, sum of these number = [tex]x+x+ 3\frac{1}{3}=2x+\frac{10}{3}[/tex]
Again according to the question,
[tex]3\times ( 2x + \frac{10}{3})= 133[/tex]
[tex]6x + 10 = 133[/tex]
[tex]6x = 123[/tex]
[tex]\implies x = \frac{123}{6}[/tex]
Thus, the larger number = [tex]\frac{123}{6}+3\frac{1}{3}=\frac{123}{6}+\frac{10}{3}=\frac{123+20}{6}=\frac{143}{6}=23\frac{5}{6}[/tex]