Here we will study the function f (x) = e ^ x sin (x), where x ∈ [0, 2π]. a) Determine where the function is decreasing and increasing. b) Find all local maximam and minimam. Does the absolute (global) maximam / minimam have? c) Determine where f (x) curves up and down. Also find any turning points.

Respuesta :

we are given

[tex]f(x)=e^x sin(x)[/tex]

(a)

Firstly, we will find critical numbers

so, we will find derivative

[tex]f'(x)=e^x sin(x)+e^x cos(x)[/tex]

now, we can set it to 0

and then we can solve for x

we get

[tex]x=\frac{3\pi }{4} ,x=\frac{7\pi }{4}[/tex]

now, we can draw a number line and then locate these values

and then we can find sign of derivative on each intervals

increasing intervals:

[tex][0,\frac{3\pi}{4} )U(\frac{7\pi}{4} , 2\pi][/tex]

Decreasing interval:

[tex](\frac{3\pi}{4} ,\frac{7\pi}{4} )[/tex]

(b)

Local maxima:

It is the value of x where function changes from increasing to decreasing

so, local maxima is at

[tex]x=\frac{3\pi}{4}[/tex]

Local minima:

It is the value of x where function changes from decreasing to increasing

so, local minima is at

[tex]x=\frac{7\pi}{4}[/tex]

now, we will plug critical numbers and end values into original function

and we get

At x=0:

[tex]f(0)=e^0 sin(0)[/tex]

[tex]f(0)=0[/tex]

At [tex]x=\frac{3\pi}{4}[/tex]:

[tex]f(\frac{3\pi}{4})=e^{\frac{3\pi}{4}} sin(\frac{3\pi}{4})[/tex]

[tex]f(\frac{3\pi}{4})=7.46049[/tex]

At [tex]x=\frac{7\pi}{4}[/tex]:

[tex]f(\frac{7\pi}{4})=e^{\frac{7\pi}{4}} sin(\frac{7\pi}{4})[/tex]

[tex]f(\frac{7\pi}{4})=-172.640[/tex]

At [tex]x=2\pi [/tex]:

[tex]f(2\pi)=e^{2\pi} sin(2\pi )[/tex]

[tex]f(2\pi )=0[/tex]

Global maxima:

It is the largest value among them

so, we get

[tex]f(\frac{3\pi}{4})=7.46049[/tex]

Global minima:

It is the largest value among them

so, we get

[tex]f(\frac{7\pi}{4})=-172.640[/tex]

(c)

now, we can find second derivative

[tex]f'(x)=e^x sin(x)+e^x cos(x)[/tex]

[tex]f''(x)=\frac{d}{dx}\left(e^x\sin \left(x\right)+e^x\cos \left(x\right)\right)[/tex]

[tex]=\frac{d}{dx}\left(e^x\sin \left(x\right)\right)+\frac{d}{dx}\left(e^x\cos \left(x\right)\right)[/tex]

[tex]=e^x\sin \left(x\right)+\cos \left(x\right)e^x+e^x\cos \left(x\right)-e^x\sin \left(x\right)[/tex]

[tex]f''(x)=2e^x\cos \left(x\right)[/tex]

now, we can set it to 0

and then we can solve for x

[tex]f''(x)=2e^x\cos \left(x\right)=0[/tex]

so, we get

[tex]x=\frac{\pi}{2} ,x=\frac{3\pi}{2}[/tex]

now, we  can draw number line and locate these values

and then we can find sign of second derivative on each intervals

concave up intervals:

[tex][0,\frac{\pi}{2})U(\frac{3\pi}{2}, 2\pi][/tex]

Concave down intervals:

[tex](\frac{\pi}{2} ,\frac{3\pi}{2})[/tex]

Turning points:

All values of x for which concavity changes

so, we get turning points at

[tex]x=\frac{\pi}{2} ,x=\frac{3\pi}{2}[/tex]

Ver imagen rejkjavik
Ver imagen rejkjavik

fff

[tex]f(x) = e^x sin (x)[/tex]

To find increasing and decreasing intervals we take derivative

[tex]f'(x) = e^xsin(x)+e^x(cosx)= e^x(sinx+cosx)[/tex]

Now we set the derivative =0  and solve for x

[tex]e^x(sinx+cosx)=0[/tex]

sinx + cosx =0

divide whole equation by cos x

[tex]\frac{sinx}{cosx} + \frac{cosx}{cosx} =0[/tex]

tanx +1 =0

tanx = 1

[tex]x=\frac{3\pi }{4}[/tex] and  [tex]x=\frac{7\pi}{4}[/tex]

Now we pick a number between 0 to  [tex]\frac{3\pi }{4}[/tex]

Lets pick  [tex]\frac{\pi }{2}[/tex]

Plug it into the derivative

[tex]f'(x) =e^{\frac{\pi }{2}}(sin(\frac{\pi}{2})+cos(\frac{\pi }{2}))[/tex]

= 4.810 is positive

So the graph of f(x) is increasing on the interval [0, [tex]x=\frac{3\pi }{4}[/tex])

Now we pick a number between   [tex]\frac{7\pi}{4}[/tex] to 2pi

Lets pick  [tex]\frac{11\pi}{6}[/tex]

Plug it into the derivative

[tex]f'(x) =e^{\frac{11\pi}{6}}(sin(\frac{11\pi}{6})+cos(\frac{11\pi }{6}))[/tex]

= 116 is positive

So the graph of f(x) is increasing on the interval [tex](\frac{7\pi }{4}, 2\pi)[/tex]

Increasing interval is [tex](0,\frac{3\pi }{4}) U (\frac{7\pi }{4}, 2\pi)[/tex]

Decreasing interval is [tex](\frac{3\pi}{4}, \frac{7\pi}{4})[/tex]

(b)

The graph of f(x) increases and reaches a local maximum at [tex]x=\frac{3\pi}{4}[/tex]

The graph of f(x) decreases and reaches a local minimum at [tex]x=\frac{7\pi}{4}[/tex]

(c)

f(0) = 0

[tex]f(2\pi)=0[/tex]

[tex]f(\frac{3\pi }{4})=7.46[/tex]

[tex]f(\frac{7\pi}{4})=-172.64[/tex]

Here global maximum at [tex]x=\frac{3\pi}{4}[/tex]

Here global minimum at [tex]x=\frac{7\pi}{4}[/tex]