Respuesta :
Answer:
Coordinates of other end point L = ( -19, 13 )
Explanation:
The mid point of the coordinates (a,b) and (c,d) is given by [tex](\frac{a+c}{2},\frac{b+d}{2})[/tex]
Here we have (a,b) = (1,-7) and [tex](\frac{a+c}{2},\frac{b+d}{2})[/tex] = (-9,3) , we need to find (c,d).
[tex]\frac{a+c}{2} =-9\\ \\ 1+c=-18\\ \\ c=-19\\\\ \frac{b+d}{2} =3\\ \\ -7+d=6\\ \\ d=13[/tex]
So coordinates of other end point L = ( -19, 13 )
If K is midpoint of segment HL, then its coordinates can be calculated by the formula
[tex]x_K=\dfrac{x_H+x_L}{2},\\ \\y_K=\dfrac{y_H+y_L}{2}.[/tex]
You are given coordinates of points H and K: H(1,-7) and K(-9,3), then
[tex]-9=\dfrac{1+x_L}{2},\\ \\3=\dfrac{-7+y_L}{2}.[/tex]
Find the coordinates of point L:
[tex]-9=\dfrac{1+x_L}{2}\Rightarrow 1+x_L=-18,\ x_L=-19;[/tex]
[tex]3=\dfrac{-7+y_L}{2}\Rightarrow -7+y_L=6,\ y_L=13.[/tex]
Answer: L(-19,13)