EL PERIMETRO DELCUADRADO X ES DOS TERCIOS DEL PERIMETRO DEL CUADRADO Y. EL UCADRADO Y ES DOS TERCIOS DEL PERIMETRO DEL CUADRADO Z. EL AREA DEL CUADRADO X ES DE 16 CM2 ¿CUAL ES AREA DEL CUADRADO Z?

Respuesta :

the question in English is

THE SQUARE PERIMETER X IS TWO THIRDS OF THE SQUARE PERIMETER Y. THE PERIMETER OF THE SQUARE Y IS TWO THIRDS OF THE PERIMETER OF THE SQUARE Z. THE AREA OF THE SQUARE X IS 16 CM2 WHAT IS THE AREA OF THE SQUARE Z?

Let

Px--------> the perimeter of square x

Py--------> the perimeter of square y

Pz--------> the perimeter of square z

Ax--------> the area of square x

Az--------> the area of square z

Step 1

Find the length side of the square x

we know that

[tex]Px=\frac{2}{3} Py[/tex] -------> equation A

[tex]Py=\frac{2}{3} Pz[/tex] -------> equation B

[tex]Ax=16\ cm^{2}[/tex]

[tex]Ax=x^{2}[/tex]

so

[tex]x^{2}=16[/tex]

[tex]x=4\ cm[/tex]

Step 2

Find the perimeter of square x

[tex]Px=4x[/tex]

substitute the value of x in the formula

[tex]Px=4*4=16\ cm[/tex]

Step 3

Find the perimeter of square y

use the equation A

[tex]Px=\frac{2}{3} Py[/tex]

solve for Py

[tex]Py=\frac{3}{2} Px[/tex]

substitute the value of Px

[tex]Py=\frac{3}{2}16=24\ cm[/tex]

Step 4

Find the perimeter of square z

use the equation B

[tex]Py=\frac{2}{3} Pz[/tex]

solve for Pz

[tex]Pz=\frac{3}{2} Py[/tex]

substitute the value of Py

[tex]Pz=\frac{3}{2} 24=36\ cm[/tex]

Step 5

Find the area of square z

we know that

the area of the square z is equal to

[tex]Az=z^{2}[/tex]

Find the length side of square z

[tex]Pz=4z[/tex]

[tex]Pz=36\ cm[/tex]

so

[tex]4z=36[/tex]

[tex]z=9\ cm[/tex]

substitute the value of z in the area's formula

[tex]Az=9^{2}=81\ cm^{2}[/tex]

therefore

the answer is

the area of the square z is [tex]81\ cm^{2}[/tex]