P(x) = x3 - 2x2 - 13x - 10 one root of the polynomial above is 5. Use synthetic division to factor out x - 5.
Enter the values for a, b, and c in the factored form

Px x3 2x2 13x 10 one root of the polynomial above is 5 Use synthetic division to factor out x 5 Enter the values for a b and c in the factored form class=

Respuesta :

a = 1 , b = 3 , c = 2


Answer:

The values are a=1, b=3 and c=2

Step-by-step explanation:

Given: [tex]P(x)=x^3-2x^2-13x-10[/tex]

One root of the polynomial above is 5.

(x-5) must be factor of P(x)

Using synthetic division to find another factor of P(x)

Synthetic Division:

5   |  1     -2      -13       -10  |

              5       15         10

       1      3        2          0

At last number we get 0. This show 5 is root of P(x)

We got three number 1  3   2

using this number write another factor of P(x)

[tex]\Rightarrow x^2+3x+2[/tex]

Factor of P(x)

[tex]P(x)=(x+5)(x^2+3x+2)[/tex]

[tex]P(x)=(x+5)(ax^2+bx+c)[/tex]

Compare the factored expression

[tex](x+5)(ax^2+bx+c)=(x+5)(x^2+3x+2)[/tex]

[tex]ax^2=x^2, a\rightarrow 1[/tex]

[tex]bx=3x, b\rightarrow 3[/tex]

[tex]c=2, c\rightarrow 2[/tex]

Hence, The values are a=1, b=3 and c=2

Ver imagen isyllus