Respuesta :
3e - [tex]\frac{3}{2}[/tex] f - [tex]\frac{3}{8}[/tex]
multiply each of the terms in the parenthesis by [tex]\frac{1}{2}[/tex]
[tex]\frac{1}{2}[/tex] (6e - 3f - [tex]\frac{3}{4}[/tex] )
= 3e - [tex]\frac{3}{2}[/tex] f - [tex]\frac{3}{8}[/tex]
Answer:
[tex]3e-\frac{3}{2}f-\frac{3}{8}[/tex]
Step-by-step explanation:
The given expression is
[tex]\frac{1}{2}(6e-3f-\frac{3}{4})[/tex]
To find an equivalent expression, we need to use the distributive property, that is, we have to multiply [tex]\frac{1}{2}[/tex] with each term that's inside the parenthesis.
[tex]\frac{1}{2}(6e-3f-\frac{3}{4})\\\frac{6e}{2}-\frac{3f}{2}-\frac{3}{2(4)}\\ 3e-\frac{3}{2}f-\frac{3}{8}[/tex]
Therefore, the equivalent expression is
[tex]3e-\frac{3}{2}f-\frac{3}{8}[/tex]
Remember that when we multiply fractions, we have to do it in a linear way, that is, numerators multiply each other, and denominators multiply each other. That means you CAN'T multiply a numerator with a denominator.