Respuesta :

Answer:

+/- 3/5

Step-by-step explanation:

[tex]\text{csc}(\theta)[/tex] = 1 1/4       Convert 1 1/4 into an improper fraction

[tex]\text{csc}(\theta)=\dfrac{5}{4}[/tex]          Turn 5/4 upsidedown to get sin( sin[tex]\theta[/tex])

[tex]\dfrac{1}{csc(\theta)} =sin(\theta)\\[/tex]    1 / csc(theta) = sin(theta)

[tex]sin(\theta) = 4/5[/tex]                                 sin(theta) = 4/5 which is the reciprocal of 5/4

Cos(theta) = sqrt(1 - sin^2(theta) )                   This is the identity relationship between sin(theta) and cos(theta)

Cos(theta) = sqrt( 1 - (4/5)^2 )                           (4/5)^2 = 16/25; 1 - 16/25 = 9/25

Cos(theta) = sqrt( 9/25)

Cos(theta) = +/- sqrt(9/25)                               sqrt of 9/25 = 3/5

cos(theta) = +/- 3/5                                          Answer <<<<