Respuesta :

Add both and set it equal to 90

Answer:

Option 2nd is correct

67°

Step-by-step explanation:

Given that:

In right △ABC with right angle B.

[tex]m \angle B = 90^{\circ}[/tex], m∠A=(3x−8)° and m∠C=(x−2)°.

We know that the sum of all the measures of a triangle is 180 degree

In triangle ABC

⇒[tex]m\angle A+ m\angle B+ m\angle C = 180^{\circ}[/tex]

Substitute the values we have;

[tex]3x-8+90^{\circ}+x-2 = 180^{\circ}[/tex]

Subtract 90 degree from both sides we have;

[tex]3x-8+x-2 = 90^{\circ}[/tex]

Combine like terms;

[tex]4x-10= 90^{\circ}[/tex]

Add 10 to both sides we have;

[tex]4x=100^{\circ}[/tex]

Divide both sides by 4 we have;

[tex]x=25^{\circ}[/tex]

then;

m∠A=(3(25)−8)° = (75-8)° = 67°

Therefore, the measure of angle A is, 67°