Answer:
Variance of the given data = 31.143
Explanation:
Variance, [tex]\sigma^2=\frac{1}{n} \sum_{i=1}^{n}(x_i-\mu)^2[/tex], where n is the number of observations, μ is the mean and [tex]x_i[/tex] is the observations made.
Number of observations, n = 7
Mean, μ = [tex]\frac{10+19+21+28+12+20+16}{7} = 18[/tex]
[tex]\sum_{i=1}^{n}(x_i-\mu)^2=(10-18)^2+(19-18)^2+(21-18)^2+(28-18)^2+(12-18)^2+(20-18)^2+(16-18)^2\\ \\ \sum_{i=1}^{n}(x_i-\mu)^2=64+1+9+100+36+4+4=218[/tex]
[tex]\sigma^2=\frac{1}{n} \sum_{i=1}^{n}(x_i-\mu)^2=\frac{218}{7} =31.143[/tex]
So variance of the given data = 31.143