Drag each expression to show whether it is equivalent to 36x + 9, 9(4x – 1), or (4 • 9x) + (4 • 2).

Start with expressions in blue boxes:
1st column) [tex]36x+9;[/tex]
2nd column) [tex]9(4x-1)=36x-9;[/tex]
3rd column) [tex](4\cdot 9x)+(4\cdot 2)=36x+8.[/tex]
You have 6 expressions. Consider all them:
1. [tex]36x+8[/tex] - 3rd column;
2. [tex](9\cdot 4x)+(9\cdot 1)=36x+9[/tex] - 1st column;
3. [tex](3\cdot 12x)-(3\cdot 3)=36x-9[/tex] - 2nd column;
4. [tex]9(4x+1)=36x+9[/tex] - 1st column;
5. [tex]36x-9[/tex] - 2nd column;
6. [tex]4(9x+2)=36x+8[/tex] - 3rd column.
Answer:
The equivalent expressions are:
[tex]36x + 9=(9\cdot 4x) + (9\cdot 1)=9(4x + 1)[/tex]
[tex]9(4x-1)=36x-9=(3\cdot 12x)-(3\cdot 3)[/tex]
[tex](4\cdot 9x)+(4\cdot 2)=4(9x+2)=36x+8[/tex]
Step-by-step explanation:
Consider the provided expressions.
[tex]36x + 9[/tex]
The expression [tex]36x + 9[/tex] can be written as:
[tex]36x + 9=(9\cdot 4x) + (9\cdot 1)[/tex]
[tex]36x + 9=(9\cdot 4x) + (9\cdot 1)=9(4x + 1)[/tex]
Consider the expression [tex]9(4x-1)[/tex]
The expression [tex]9(4x-1)[/tex] can be written as:
[tex]9(4x-1)=36x-9[/tex]
Take 3 common.
[tex]9(4x-1)=36x-9=(3\cdot 12x)-(3\cdot 3)[/tex]
Consider the expression [tex](4\cdot 9x)+(4\cdot 2)[/tex]
The expression [tex](4\cdot 9x)+(4\cdot 2)[/tex] can be written as:
Take out 4 common
[tex](4\cdot 9x)+(4\cdot 2)=4(9x+2)[/tex]
Open the parentheses.
[tex](4\cdot 9x)+(4\cdot 2)=4(9x+2)=36x+8[/tex]