Suppose that the functions r and s are defined for all real numbers x as follows.
r(x) = x-1
s(x) = 3x^2
Write the expressions for (r+s) (x) and (r*s) (x) and evaluate (r-s) (-3).
(r+s) (x) =
(r*s) (x) =
(r-s) (-3) =

Please help.

Respuesta :

ANSWER

Given

[tex]r(x) = x - 1[/tex]


and

[tex]s(x) = 3 {x}^{2} [/tex]
ANSWER TO QUESTION 1

[tex](r + s)(x) = r(x) + s(x)[/tex]


[tex](r + s)(x) = x - 1 + 3 {x}^{2} [/tex]


[tex](r + s)(x) = 3 {x}^{2} + x - 1[/tex]



ANSWER TO QUESTION 2



[tex](r \times s)(x) = r(x) \times s(x)[/tex]


[tex](r \times s)(x) = (x - 1) \times 3 {x}^{2} [/tex]


[tex](r \times s)(x) = 3 {x}^{3} - 3 {x}^{2} [/tex]

ANSWER TO QUESTION 3

[tex]( r - s)(x) = r(x) - s(x)[/tex]



[tex]( r - s)(x) = x - 1 - 3 {x}^{2} [/tex]


[tex]( r - s)( - 3) = (- 3) - 1 - 3 ({ - 3}^{2} )[/tex]



[tex]( r - s)( - 3) = - 4 - 3 \times 9[/tex]



[tex]( r - s)( - 3) = - 4 - 27 = - 31[/tex]

Answer:

r=x-1 over x

s=3x

i skipped one

=rx+sx

=rsx

=−3r+3s

Step-by-step explanation: if i got it right please i need brainly.