Respuesta :
Answer
a = 3.674 m / s ^ 2
t = 3.13 s
Using the kinematic equations for the movement we have:
[tex]h(t) = P_{0} + Vot + \frac{1}{2}at ^ 2[/tex] (1)
[tex]V_{f} = V_{0} + at[/tex] (2)
Where:
[tex]P_{0}[/tex] = initial position
[tex]V_{0}}[/tex] = initial velocity
a = acceleration
t = time in seconds
[tex]V_{f}[/tex] = final speed
We know:
[tex]P_{0}=0[/tex]
[tex]V_{0}= 0[/tex]
h = 18 m
[tex]V_{f} = 11.5\frac{m}{s}[/tex]
So:
From (2) we have that: [tex]t =\frac{V_{f}}{a}[/tex]
[tex]t =\frac{11.5}{a}[/tex]
From (1) we have to:
[tex]h (t) = 0.5at ^ 2\\h = 18 = 0.5at ^ 2[/tex]
Then we clear "a" to find the acceleration.
[tex]\frac{36}{t^2} = a\\a = \frac{36}{(\frac{11.5}{a})^2} \\\\a =\frac{11.5^2}{36}\\a = 3.674 m / s ^2[/tex]
Then, the time it takes to reach this speed is:
[tex]t =\frac{V_{f}}{a}\\t =\frac{11.5}{3.674}\\t = 3.13 s[/tex]
Answer:
Part 1.
Given data:
- v = final velocity
- u = initial velocity
- a = acceleration
- s = distance traveled
For part 1.
v = 11.5m/s
u = 0 which is the starting velocity
a = ?
s = 18.0m
Solution:
Using below formula:
v^2 = u^2 + 2as
11.5² = 0 + 2a(18m)²
a = 3.67 m / s^2
a = 3.67 m / s^2
Part 2.
Given data:
v = 11.50m/s
u = 0 which is the starting velocity
a = 3.6795 m / s^2
Solution:
Formula: v = u + at
11.5m/s = 0m/s + 3.6795 m / s^2 (t)
= t = 3.13 s
t = 3.13 s