Respuesta :

gmany

The point-slope form:

[tex]y-y_1=m(x-x_1)\\\\m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

We have two points (-2, -6) and (0, -2). Substitute:

[tex]m=\dfrac{-2-(-6)}{0-(-2)}=\dfrac{4}{2}=2\\\\y-(-6)=2(x-(-2))\\\\y+6=2(x+2)\qquad|\text{use distributive property}\\\\y+6=2x+4\qquad|\text{subtract 6 from both sides}\\\\y=2x-2\qquad|\text{subtract 2x from both sides}\\\\-2x+y=-2\qquad|\text{change the signs}\\\\2x-y=2[/tex]

Answer:

point-slope form: y + 6 = 2(x + 2)

slope-intercept form: y = 2x - 2

standard form: 2x - y = 2

Ver imagen gmany