Density of the neutron star is given as
[tex]\rho = 1 \time 10^{18} kg/m^3[/tex]
Radius of the star is also given as
[tex]R = 1 \times 10^{-5} m[/tex]
now in order to find the mass of star we can assume that star is spherical in shape
so here we can use
[tex]V = \frac{4}{3}\pi R^3[/tex]
[tex]V = \frac{4}{3}\pi (1 \times 10^{-5})^3[/tex]
[tex]V = 4.2 \times 10^{-15} m^3[/tex]
now mass of the star will be given as
[tex]M = \rho V = 4.2 \times 10^{-15} \times 1 \times 10^{18}[/tex]
[tex]M = 4.2 \times 10^3 kg[/tex]
so weight of the star on the earth will be
[tex]W = Mg[/tex]
[tex]W = 4.2 \times 10^3 \times 9.8[/tex]
[tex]W = 4.1 \times 10^4 N[/tex]
so weight on the earth is given by above equation