PLEASE I NEED HELP!!! WILL MARK BRAINLIEST!!!
Describe the differences in simplifying the following expressions:  [tex]\frac{x^1/2}{x^1/4}[/tex] and [tex]\sqrt[12]{x^3x^5x}[/tex] 


its x^3 times x^5 times x

Respuesta :

Let us solve our both expressions one by one.

1. [tex]\frac{x^{\frac{1}{2}}} {x^{\frac{1}{4}}}[/tex]

To solve our first problem we will use quotient rule of exponents.  

Let us subtract [tex]\frac{1}{4}[/tex] from [tex]\frac{1}{2}[/tex].

[tex]x^{\frac{1}{2}-\frac{1}{4}}[/tex]

[tex]x^{\frac{2-1}{4}}[/tex]

[tex]x^{\frac{1}{4}}[/tex]  

Therefore, our expression [tex]\frac{x^{\frac{1}{2}}} {x^{\frac{1}{4}}}[/tex] simplifies to [tex]x^{\frac{1}{4}}[/tex].

2. For our second expression, we will use product rule of exponents to multiply all the x term inside the radical.

[tex]\sqrt[12]{x^{3}\cdot x^{5}\cdot x}[/tex]

[tex]\sqrt[12]{x^{(3+5+1)}}[/tex]

[tex]\sqrt[12]{x^{(9)}}[/tex]

Now we will express our radical into exponent form using power rule of exponent.      

[tex](x^{9}) ^{\frac{1}{12}[/tex]

[tex]x^{\frac{1\cdot 9}{12} = x^{\frac{9}{12}[/tex]

Upon reducing our fraction we will get,

[tex]x^{\frac{3}{4}[/tex]

We can express our expression in radical form as: [tex]\sqrt[4]{x^{3}}[/tex].