As per Faraday's law of induction the EMF induced in the loop is due to rate of change in magnetic flux linked with the loop
So here we can say
[tex]EMF = \frac{d\phi}{dt}[/tex]
[tex]EMF = A\frac{dB}{dt}[/tex]
[tex]EMF = A\frac{B_1 - B_2}{\Delta t}[/tex]
Given that
[tex]B_1 = 0.500 T[/tex]
[tex]B_2 = 0.200 T[/tex]
[tex]\Delta t = 0.93 s[/tex]
[tex]A = 7.30 cm^2[/tex]
now plug in all values in it
[tex]EMF = 7.30\times 10^{-4} (\frac{0.500 - 0.200}{0.93})[/tex]
[tex]EMF = 2.35 \times 10^{-4} Volts[/tex]
now in order to find induced current we can use Ohm's law
[tex]V = iR[/tex]
[tex]2.35 \times 10^{-4} = i (1.30)[/tex]
[tex]i = 1.81 \times 10^{-4} A[/tex]