Answer:
[tex]m<A = 20\°[/tex]
[tex]m<C = 100\°[/tex]
[tex]m<A+m<B+m<C < 180\°[/tex]
Step-by-step explanation:
Verify each statement
case A) [tex]m<A = 20\°[/tex]
The statement is True
we know that
The measure of angle A is equal to the angle marked [tex]20\°[/tex] by corresponding angles
case B) ∠B and the angle marked [tex]60\°[/tex] are alternate exterior angles
The statement is False
Because, ∠B and the angle marked [tex]60\°[/tex] are corresponding angles
case C) [tex]m<C = 100\°[/tex] because it is a vertical angle to the angle marked [tex]100\°[/tex]
The statement is True
we know that
[tex]m<C = 100\°[/tex] ------> by vertical angles
case D) ∠B and ∠C are supplementary angles
The statement is False
we know that
[tex]m<B+m<C < 180\°[/tex] ---> the sum is less than [tex]180\°[/tex]
case E) [tex]m<A+m<B+m<C < 180\°[/tex]
The statement is True
we know that
[tex]m<A+100\°+m<B = 180\°[/tex]
and remember that
[tex]m<C = 100\°[/tex]
so
substitute
[tex]m<A+m<B+m<C < 180\°[/tex]