Respuesta :

Answer:


Step-by-step explanation:

Given x^2+4x+13=0, find the complex roots.  The best approach here is to use the quadratic formula.  Note that a = 1, b = 4 and c = 13.  

Thus, the discriminant, b^2 - 4ac, is (4)^2 - 4(1)(13) = 16 - 52 = -36, and the square root of that is plus or minus i√36, or  plus or minus 6i.  


plus or minus i√

Answer:

x = - 2 + 3i or x = - 2 - 3i

Step-by-step explanation:

Given quadratic equation,

[tex]x^2 + 4x + 13=0[/tex]

By the quadratic formula,

[tex]x=\frac{-4\pm \sqrt{4^2 - 4\times 1\times 13}}{2\times 1}[/tex]

[tex]x=\frac{-4\pm \sqrt{16-52}}{2}[/tex]'

[tex]x=\frac{-4\pm \sqrt{-36}}{2}[/tex]

[tex]x=\frac{-4\pm 6i}{2}[/tex]

[tex]x=-2\pm 3i[/tex]

Hence, the solution of the given equation,

x = - 2 + 3i or x = - 2 - 3i