Respuesta :
Answer:
Step-by-step explanation:
Given x^2+4x+13=0, find the complex roots. The best approach here is to use the quadratic formula. Note that a = 1, b = 4 and c = 13.
Thus, the discriminant, b^2 - 4ac, is (4)^2 - 4(1)(13) = 16 - 52 = -36, and the square root of that is plus or minus i√36, or plus or minus 6i.
plus or minus i√
Answer:
x = - 2 + 3i or x = - 2 - 3i
Step-by-step explanation:
Given quadratic equation,
[tex]x^2 + 4x + 13=0[/tex]
By the quadratic formula,
[tex]x=\frac{-4\pm \sqrt{4^2 - 4\times 1\times 13}}{2\times 1}[/tex]
[tex]x=\frac{-4\pm \sqrt{16-52}}{2}[/tex]'
[tex]x=\frac{-4\pm \sqrt{-36}}{2}[/tex]
[tex]x=\frac{-4\pm 6i}{2}[/tex]
[tex]x=-2\pm 3i[/tex]
Hence, the solution of the given equation,
x = - 2 + 3i or x = - 2 - 3i