Answer:
[tex] (x + 2)(x + i\sqrt{5})(x - i\sqrt{5}) [/tex]
Step-by-step explanation:
You are correct so far.
This is how you factor the binomial x^2 + 5 using complex factors.
[tex] x^2 + 5 = [/tex]
[tex] = x^2 - (-5) [/tex]
Now factor as a difference of squares: a^2 - b^2 = (a + b)(a - b).
[tex] = (x + \sqrt{-5})(x - \sqrt{-5}) [/tex]
[tex] = (x + i\sqrt{5})(x - i\sqrt{5}) [/tex]